Graph neural networks (GNNs) have demonstrated excellent performance in a wide range of applications. However, the enormous size of large-scale graphs hinders their applications under real-time inference scenarios. Although existing scalable GNNs leverage linear propagation to preprocess the features and accelerate the training and inference procedure, these methods still suffer from scalability issues when making inferences on unseen nodes, as the feature preprocessing requires the graph is known and fixed. To speed up the inference in the inductive setting, we propose a novel adaptive propagation order approach that generates the personalized propagation order for each node based on its topological information. This could successfully avoid the redundant computation of feature propagation. Moreover, the trade-off between accuracy and inference latency can be flexibly controlled by simple hyper-parameters to match different latency constraints of application scenarios. To compensate for the potential inference accuracy loss, we further propose Inception Distillation to exploit the multi scale reception information and improve the inference performance. Extensive experiments are conducted on four public datasets with different scales and characteristics, and the experimental results show that our proposed inference acceleration framework outperforms the SOTA graph inference acceleration baselines in terms of both accuracy and efficiency. In particular, the advantage of our proposed method is more significant on larger-scale datasets, and our framework achieves $75\times$ inference speedup on the largest Ogbn-products dataset.
translated by 谷歌翻译
Hazop是为揭示行业危害的安全范式,其报告涵盖了有价值的危害事件(HAE)。 HAE分类的研究具有许多不可替代的务实值。但是,没有研究对此主题如此关注。在本文中,我们提出了一种新颖的深度学习模型,称为DLF,从语言的角度通过分形方法探索HAE分类。动机是(1):HAE自然可以被视为一种时间序列; (2):HAE的含义是由单词排列驱动的。具体而言,首先我们采用bert来矢量化hae。然后,我们提出了一种称为HMF-DFA的新的多型方法,通过分析被视为时间序列的HAE矢量来计算HAE分形系列。最后,我们设计了一个新的分层门控神经网络(HGNN)来处理HAE分形系列以完成HAE的分类。我们进行了18个过程进行案例研究。我们根据他们的Hazop报告启动实验。实验结果表明,我们的DLF分类器令人满意和有前途,提出的HMF-DFA和HGNN有效,并且将语言分形引入HAE是可行的。我们的HAE分类系统可以为Hazop提供服务,并为专家,工程师,员工和其他企业带来应用激励措施,这有利于工业安全的智能发展。我们希望我们的研究能为工业安全和分形理论的日常实践提供更多支持。
translated by 谷歌翻译
Hazop可以将危害作为文本信息暴露,研究其分类对于工业信息学的发展具有重要意义,这有利于安全性预警,决策支持,政策评估等。但是,对这一重要的研究没有研究目前。在本文中,我们提出了一种通过深度学习危害分类来称为DLGM的新型模型。具体而言,首先,我们利用BERT将危险矢量化并将其视为时间序列(HTS)。其次,我们构建了一个灰色模型FSGM(1,1)来对其进行建模,并从结构参数的意义上获得灰色指导。最后,我们设计了一个层次 - 特征融合神经网络(HFFNN),以从三个主题中使用灰色指导(HTSGG)调查HTS,其中HFFNN是一种具有四种模块的层次结构:两种功能编码器,一个门控机制,和一个门控机制和一个模块。加深机制。我们将18个工业流程作为应用程序案例,并启动一系列实验。实验结果证明,DLGM有望成为危险分类的才能,FSGM(1,1)和HFFNN具有有效性。我们希望我们的研究能为工业安全的日常实践贡献价值和支持。
translated by 谷歌翻译
延时摄影是在电影和宣传电影中使用的,因为它可以在短时间内反映时间的流逝并增强视觉吸引力。但是,由于需要很长时间才需要稳定的射击,因此对摄影师来说是一个巨大的挑战。在本文中,我们提出了一个带有虚拟和真实机器人的延时摄影系统。为了帮助用户有效拍摄延时视频,我们首先参数化延时摄影并提出参数优化方法。对于不同的参数,使用不同的美学模型,包括图像和视频美学质量评估网络,用于生成最佳参数。然后,我们提出了一个延时摄影界面,以促进用户查看和调整参数,并使用虚拟机器人在三维场景中进行虚拟摄影。该系统还可以导出参数并将其提供给真实的机器人,以便可以在现实世界中拍摄延时视频。此外,我们提出了一种延时摄影美学评估方法,该方法可以自动评估及时视频的美学质量。实验结果表明,我们的方法可以有效地获得延时视频。我们还进行了用户研究。结果表明,我们的系统具有与专业摄影师相似的效果,并且更有效。
translated by 谷歌翻译
在计算机断层扫描成像的实际应用中,投影数据可以在有限角度范围内获取,并由于扫描条件的限制而被噪声损坏。嘈杂的不完全投影数据导致反问题的不良性。在这项工作中,我们从理论上验证了低分辨率重建问题的数值稳定性比高分辨率问题更好。在接下来的内容中,提出了一个新型的低分辨率图像先验的CT重建模型,以利用低分辨率图像来提高重建质量。更具体地说,我们在下采样的投影数据上建立了低分辨率重建问题,并将重建的低分辨率图像作为原始限量角CT问题的先验知识。我们通过交替的方向方法与卷积神经网络近似的所有子问题解决了约束最小化问题。数值实验表明,我们的双分辨率网络在嘈杂的有限角度重建问题上的变异方法和流行的基于学习的重建方法都优于变异方法。
translated by 谷歌翻译
二重性优化已应用于各种机器学习模型。近年来已经开发了许多随机的二元优化算法。但是,他们中的大多数都限制了他们对单机器设置的关注,因此他们无法处理分布式数据。为了解决这个问题,在所有参与者组成网络并在该网络中执行点对点通信的设置,我们基于梯度跟踪通信机制和两个不同的梯度估计器开发了两个新颖的分布式随机双光线优化算法。此外,我们证明他们可以实现$ o(\ frac {1} {\ epsilon^{2} {2}(1- \ lambda)^2})$和$ o(\ frac {1} {\ epsilon^{3/ 2}(1- \ lambda)^2})$收敛率分别以获取$ \ epsilon $ - 准确解决方案,其中$ 1- \ lambda $表示通信网络的频谱差距。据我们所知,这是实现这些理论结果的第一项工作。最后,我们将算法应用于实用的机器学习模型,实验结果证实了我们算法的功效。
translated by 谷歌翻译
零射击行动识别(ZSAR)旨在识别培训期间从未见过的视频动作。大多数现有方法都假设看到和看不见的动作之间存在共享的语义空间,并打算直接学习从视觉空间到语义空间的映射。视觉空间和语义空间之间的语义差距挑战了这种方法。本文提出了一种新颖的方法,该方法使用对象语义作为特权信息来缩小语义差距,从而有效地帮助学习。特别是,提出了一个简单的幻觉网络,以在不明确提取对象的情况下隐式提取对象语义,并开发了一个交叉注意模块,以增强对象语义的视觉功能。奥林匹克运动,HMDB51和UCF101数据集的实验表明,所提出的方法的表现优于最先进的方法。
translated by 谷歌翻译
图形神经网络(GNN)在各种图挖掘任务中取得了巨大的成功。但是,当GNN堆叠着许多层时,总是观察到急剧性能降解。结果,大多数GNN仅具有浅层建筑,这限制了它们的表现力和对深社区的开发。最近的研究将深度GNN的性能降低归因于\ textit {过度平滑}的问题。在本文中,我们将传统的图形卷积操作分为两个独立操作:\ textit {passagation}(\ textbf {p})和\ textit {transformation}(\ textbf {t})。可以分为传播深度($ d_p $)和转换深度($ d_t $)。通过广泛的实验,我们发现深度GNNS性能下降的主要原因是\ textit {model dygradation}问题是由大$ d_t $而不是\ textit {过度平滑}问题引起的,主要是由大$ d_p $引起的。 。此外,我们提出\ textIt {自适应初始残留}(air),一个与各种GNN架构兼容的插件模块,以减轻\ textit {model {model dradation degradation}问题和\ textit {textit {过度敏感}问题同时。六个现实世界数据集的实验结果表明,配备空气的GNN胜过大多数具有浅层建筑的GNN,这是由于大型$ d_p $和$ d_t $的好处,而与空气相关的时间成本则可以忽略。
translated by 谷歌翻译
K-Core Deconnosition是一个常用的指标来分析图形结构或研究节点在复杂图中的相对重要性。近年来,图表的规模迅速增长,特别是在工业环境中。例如,我们的工业伙伴以数十亿用户运行流行的社交应用程序,并且能够收集丰富的用户数据。因此,对大型图形的k核分解应用于学术界和行业的越来越多的关注。处理大图的简单但有效的方法是在分布式设置中训练它们,并且还提出了一些分布式k核分解算法。尽管他们有效性,我们在实验和理论上观察到这些算法消耗了太多资源,并在超大型图表上变得不稳定,特别是当给定的资源有限时。在本文中,我们处理那些超大型图形,并在分布式K核分解算法的顶部提出了分行和征服策略。我们在三个大图中评估我们的方法。实验结果表明,资源的消耗可以显着降低,大规模图的计算比现有方法更稳定。例如,分布式K-Core分解算法可以缩放到具有1360亿边缘的大图,而不会与我们的分行和征服技术丢失正确性。
translated by 谷歌翻译
近年来,涌入3D自主车辆对象检测算法。但是,很少关注取向预测。现有的研究工作提出了各种预测方法,但尚未进行全面的,确凿的审查。通过我们的实验,我们使用基提3D对象检测数据集分类和经验地比较各种现有方向表示的准确性性能,并提出了一种新的方向表示形式:三象。其中,基于笛卡尔的基于笛卡尔的表示或单个垃圾箱实现了最高的精度,具有额外的通道输入(位置编码和深度图),不会提高预测性能。我们的代码在github上发布:https://github.com/umd-fire-coml/kittio -orientation-learning
translated by 谷歌翻译